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Abstract
We develop rigorous, analytic techniques to study the behaviour of biased
random walks on combs. This enables us to calculate exactly the spectral
dimension of random comb ensembles for any bias scenario in the teeth or
spine. Two specific examples of random comb ensembles are discussed: the
random comb with nonzero probability of an infinitely long tooth at each
vertex on the spine and the random comb with a power-law distribution of
tooth lengths. We also analyse transport properties along the spine for these
probability measures.

PACS numbers: 05.40.Fb, 04.60.Nc, 05.45.Df

1. Introduction

The behaviour of random walks on random combs is of interest from a number of points of
view. Condensed matter physicists have studied such structures because they serve as a model
for diffusion in more complicated fractals and percolation clusters [1–4]. In the context of
quantum gravity, random combs are a tractable example of a random manifold ensemble and
understanding their geometric properties can provide insight into higher dimensional problems
[5–7]. Most of the literature concerns approximate analytical techniques and numerical
solutions, although there are exact calculations of leading order behaviour in some cases [8].
To this end, it is desirable to have rigorous methods for determining the geometric quantities
of interest and that is the purpose of this paper.

One such quantity is the dimensionality of the ensemble. On a sufficiently smooth
manifold all definitions of dimension will agree, but for fractal geometries like random combs
this is not necessarily true. The spectral dimension is defined to be ds provided the ensemble
average probability of a random walker being back at the origin at time t takes the asymptotic
form t−ds/2. This concept of dimension does not in general agree with the Hausdorff dimension
dH , which is defined when the expectation value of the volume enclosed within a geodesic
distance R from a marked point scales like RdH as R → ∞.
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We know that for diffusion on regular structures the mean square displacement at large
times is proportional to t, but for a fractal substrate there is anomalous diffusion and the mean
square displacement behaves like t2/dw , where dw represents the fractal dimension of the walk
and depends sensitively on the nature of the random structure.

Biased random walks on combs have also been studied in connection with disordered
materials, since such a system is a paradigm for diffusion on fractal structures in the presence
of an applied field [9, 10]. As we discuss later there are several different bias regimes.
Topological bias, where at every vertex in the comb there is an increased probability of moving
away from the origin, was first studied for a random comb with a power-law distribution of
tooth lengths in [11]. Other works have discussed the effects of bias away from the origin only
in the teeth [12] and only in the spine [13]. The effect of going into the teeth can be viewed
as creating a waiting time for the walk along the spine; the distribution of the waiting time
depends on both the bias and the length of the teeth and the outcome is the result of subtle
interplay between the two.

In [14], some new, rigorous techniques were developed to study random walks on combs.
This enabled an exact, but very simple calculation of the spectral dimension of random
combs. The principal idea is to split both random combs and random walks into subsets
that give either strictly controllable or exponentially decaying contributions to the calculation
of physical characteristics. These methods were later reinforced to prove that the spectral
dimension of generic infinite tree ensembles is 4/3 [15, 16]. In this paper, we use and extend
the techniques of [14] to deal with biased walks on combs. Some of our results are new, some
qualify statements made in the literature and some merely confirm results already derived by
other, usually less rigorous, methods.

The random combs, the bias scenario, some useful generating functions and the critical
exponents are defined in the next section. In section 3, we introduce some deterministic
combs, discuss general properties of the generating functions and establish bounds that will
be instrumental when studying random ensembles. Section 4 presents regions of bias where
the large time behaviour is independent of the comb ensemble or simply dependent on the
expectation value of the first return generating function in the teeth. In section 5, we compute
the spectral dimension in regions of bias where it is influenced by the probability measure on
the teeth. Two specific cases are considered: the random comb with nonzero probability of
an infinitely long tooth at each vertex on the spine and the random comb with a power-law
distribution of tooth lengths. In section 6, we examine transport properties along the spine for
these same probability measures and in the final section we review the main results, compare
with the literature and discuss their significance. Some exact calculations and proofs omitted
from the main text are outlined in the appendices.

2. Definitions

Wherever possible we use the definitions and notation of [14]; we repeat them here for the
reader’s convenience but mostly refer back to [14] for proofs and derived properties.

2.1. Random combs

Let N∞ denote the nonnegative integers regarded as a graph so that n has the neighbours n±1
except for 0 which only has 1 as a neighbour. Let N� be the integers 0, 1, . . . , � regarded as
a graph so that each integer n ∈ N� has two neighbours n ± 1 except for 0 and � which only
have one neighbour, 1 and �− 1, respectively. A comb C is an infinite rooted tree graph with a
special subgraph S called the spine which is isomorphic to N∞ with the root, which we denote
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Figure 1. A comb.

by r, at n = 0. At each vertex of S, except the root r, there is attached by their endpoint 0
one of the graphs N� or N∞. The linear graphs attached to the spine are called the teeth of
the comb, see figure 1. We will denote by Tn the tooth attached to the vertex n on S, and
by Ck the comb obtained by removing the links (0, 1), . . . , (k − 1, k), the teeth T1, . . . , Tk

and relabelling the remaining vertices on the spine in the obvious way. An arbitrary comb is
specified by a list of its teeth {T1, . . .} and |Tk| denotes the length of the tooth. Note that we
have excluded the possibility of a tooth of zero length. This is for technical convenience in
what follows and can be relaxed [17].

In this paper, we are interested in random combs for which the length � of each tooth
is identically and independently distributed with probability µ�. This induces a probability
measure µ on the positive integers and expectation values with respect to this measure will be
denoted by 〈·〉µ. In particular, we will consider the two measures

µA
� =




p, � = ∞,

1 − p, � = 1,

0, otherwise;
µB

� = Ca

�a
, a > 1.

(1)

However, the results proved for µB apply to any measure with the same behaviour at large � and
we note in passing that the methods used here will work for any distribution that is reasonably
smooth, for example the exponential distribution. The measure µB has been discussed quite
extensively in the literature but µA has not.

2.2. Biased random walks

We regard time as integer valued and consider a walker who makes one step on the graph
for each unit time interval. If the walker is at the root or at the endpoint of a tooth then she
leaves with probability 1. If at any other vertex the probabilities are parameterized by two
numbers ε1 and ε2 as shown in figure 2(a) and the allowed range of these parameters is shown
in figure 2(b). For walks in the teeth there is bias away from or towards the spine depending
on whether ε2 is positive or negative; similarly, a walk on the spine is biased away from or
towards the root depending on whether ε1 is positive or negative. When there is no bias we
say that the walk is ‘critical’; the fully critical case ε1 = ε2 = 0 was covered in [14]. The
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Figure 2. Bias parameterization.

notation

b− = 1 − ε1 − ε2,

b+ = 1 + ε1 − ε2,

bT = 1 + 2ε2

(2)

will be used where applicable since these combinations appear often in our analysis. We
denote by B,B ′, B1, B2, etc constants which depend on ε1 and ε2 and may vary from line to
line but are positive and finite on the relevant range; other constants will be denoted by c,

c′, etc.
The generating function for the probability pC(t) that the walker on C is back at the root

at time t having left it at t = 0 is defined by

QC(x) =
∞∑
t=0

(1 − x)t/2pC(t). (3)

Letting ω be a walk on C starting at r, ω(t) the vertex where the walker is to be found at time
t and ρω(t) the probability for the walker to step from ω(t) to ω(t + 1), we have

QC(x) =
∑

ω:r→r

(1 − x)
1
2 |ω|

|ω|−1∏
t=0

ρω(t). (4)



Biased random walks on random combs 8269

A similar relation gives the generating function for probabilities for first return to the root,
PC(x), except that the trivial walk of duration 0 is excluded. The two functions are related by

QC(x) = 1

1 − PC(x)
, (5)

and it is straightforward to show that PC(x) satisfies the recurrence relation

PC(x) = (1 − x)b−
3 − b+PC1(x) − bT PT1(x)

. (6)

Note that PC(x) and QC(x) depend upon ε1 and ε2; to avoid clutter we will normally suppress
this dependence but if necessary it will appear as superscripts. It is important for what follows
that QC is a convex function of PC which is itself a convex function of PT1 , . . . , PTk

, PCk
for

any k > 0.
For an ensemble of combs, we will denote the expectation values of the generating

functions for return and first return probabilities as

Q(x) = 〈QC(x)〉µ P (x) = 〈PC(x)〉µ. (7)

We will say that g(x) ∼ f (x) if there exist positive constants c, c′, σ, σ ′ and x0 such that

cf (x) exp(−σ |log f (x)|1/a) < g(x) < c′f (x)|log f (x)|σ ′
(8)

for 0 < x � x0. The tactic of this paper is to prove bounds of this form for the generating
functions; in almost all cases our results are in fact a little stronger having σ = σ ′ = 0 when
we will say that g(x) ≈ f (x).

The random walk on C is recurrent if PC(0) = 1 in which case we define the exponent β

through

1 − PC(x) ∼ xβ. (9)

If β is an integer then we expect logarithmic corrections and define β̃ if

1 − PC(x) ≈ xβ |log x|−β̃ . (10)

It follows that QC(x) diverges as x → 0 and we define α by

QC(x) ∼ x−α, (11)

and if α is an integer, α̃ when

QC(x) ≈ x−α|log x|α̃ . (12)

If PC(0) < 1 then the random walk is non-recurrent, or transient, and QC(x) is finite as
x → 0. Then if, as x → 0, the first k − 1 derivatives of QC(x) are finite but the kth derivative
diverges we define the exponent αk by

Q
(k)
C (x) ∼ x−αk , (13)

and if αk is an integer, α̃k when

Q
(k)
C (x) ≈ x−αk |log x|α̃k . (14)

In considering the ensemble of combs µ, we define all these exponents in exactly the same
way simply replacing PC(x) with 〈PC(x)〉µ and so on. Note that for a single recurrent comb
β = α but in an ensemble this is no longer necessarily the case; applying Jensen’s inequality
to (5) we see that β � α.

If Q(k)(x) ∼ x−αk then it is straightforward to show that

Rk(λ) =
λ−1∑
t=0

t k〈pC(t)〉µ ∼ λ−αk . (15)

It follows that if the sequence decays uniformly at large t, which we do not prove, then it
falls off as tαk−1−k . Thus we define ds = 2(1 + k − αk). Similarly if Q(x) ≈ |log x|α̃ then
R(λ) ≈ |log λ|α̃ and, again assuming uniformity, 〈pC(t)〉µ falls off as t−1|log t |α̃−1.
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2.3. Two-point functions

Let p1
C(t; n) denote the probability that the walker on C, having left r at t = 0 and not

subsequently returned there, is at point n on the spine at time t. The corresponding generating
function, which we will call the two-point function, is defined by

GC(x; n) =
∞∑
t=0

(1 − x)t/2p1
C(t; n). (16)

Letting ω be a walk on C starting at r and ending at n without returning to r we have

GC(x; n) =
∑

ω:r→n

(1 − x)
1
2 |ω|

|ω|−1∏
t=0

ρω(t). (17)

Following the discussion in section 2.2 of [14] this leads us to the representation

GC(x; n) = 3

b+(1 − x)n/2

n−1∏
k=0

b+

b−
PCk

(x). (18)

2.4. The heat kernel

Let KC(t; n, �) denote the probability that the walker on C, having left r at t = 0, is at point
� in tooth Tn at time t. KC(t; n, �) satisfies the diffusion equation on C so we call it the heat
kernel. The probability that the walker has travelled a distance n along the spine at time t is
given by

KC(t; n) =
∞∑

�=0

KC(t; n, �), (19)

and has generating function

HC(x; n) =
∞∑
t=0

(1 − x)t/2KC(t; n). (20)

HC(x; n) can be written as

HC(x; n) = GC(x; n)

1 − PC(x)
D|Tn|(x), (21)

where

D�(x) = 1 +
bT

3

�∑
k=1

GN�
(x; k), (22)

and we define

H(x; n) = 〈HC(x; n)〉µ. (23)

Note that, because KC(t; n) is a probability,
∞∑

n=0

H(x; n) = 1 +
√

1 − x

x
. (24)

The exponent dk is defined through the moments in n
∞∑

n=0

nkH(x; n) ≈ x−1−dk , (25)
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and in the case dk = 0 the exponent d̃k is defined when
∞∑

n=0

nkH(x; n) ≈ x−1|log x|d̃k . (26)

If ε1 � 0 one can show that on any comb 〈n〉ω:|ω|=t is a non-decreasing sequence and thus that
there is some constant T0 such that for T > T0

c

(
T

|log T |
)d1

< 〈〈n〉ω:|ω|=T + 〈n〉ω:|ω|=T +1〉µ < c T d1 , d1 
= 0

c |log T |d̃1 < 〈〈n〉ω:|ω|=T + 〈n〉ω:|ω|=T +1〉µ < c |log T |d̃1 , d1 = 0.

(27)

If ε1 < 0 (for which we always have d̃1 = 0) then we have only the weaker result that for
T > T0

c

(
T

|log T |
)1+d1

<

T∑
t=0

〈〈n〉ω:|ω|=t 〉µ < c T 1+d1 . (28)

3. Basic properties

3.1. Results for simple regular combs

The relation (6) can be used to compute the generating functions for a number of simple
regular graphs which will be important in our subsequent analysis [14].

(i) An infinitely long tooth, N∞:

P∞(x) =



1 − x
1
2 if ε2 = 0;

1 − 2|ε2|
bT

− x

4|ε2| (1 − 2ε2) + O(x2) otherwise.
(29)

(ii) A tooth of length �,N�:

P�(x) = P∞(x)
1 + XY 1−�

1 + XY−�
(30)

where

X = bT (1 − P∞(x))

2 − bT (1 + P∞(x))
, Y = 2 − bT P∞(x)

bT P∞(x)
. (31)

(iii) The comb 	 given by {Tk = N1,∀k} has all teeth of length 1, and

P	(x) =



1 − B1x
1
2 + O(x) if ε1 = 0;

1 − ε2 − |ε1|
b+

− x
B2

|ε1| + O(x2) otherwise.
(32)

Note that 	 is non-recurrent if ε1 > 0. It is also convenient to define �	 to be
{T1 = N�,C1 = 	}.

(iv) The comb * given by {Tk = N∞,∀k} has all teeth of length ∞ and is non-recurrent for
ε2 > 0,

P∗(x) =
1 + ε2 −

√
4ε2 + ε2

1

b+
− x

B1√
4ε2 + ε2

1

+ O(x2). (33)
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Otherwise

P∗(x) =




1 − |ε1|
1 + ε1

− B2

|ε1|x
1
2 + O(x) if ε2 = 0, ε1 
= 0;

1 − ε2 − |ε1|
b+

− x
B3

|ε1| + O(x2) if ε2 < 0, ε1 
= 0;
1 − B4x

1
2 + O(x) if ε2 < 0, ε1 = 0.

(34)

(v) The comb 
� given by {Tk = N�,∀k} has all teeth of length � and

P
�(x) =




1 − |ε1|
1 + ε1

− B1

|ε1| (� + 1 + |ε1|)x + O(x2�2) if ε2 = 0, ε1 
= 0;
1 − ε2 − |ε1|

b+
− x

B2

|ε1ε2| + O(xY−�) if ε2 < 0, ε1 
= 0;

1 − B3

|ε2|x
1
2 + O(x

1
2 Y−�) if ε2 < 0, ε1 = 0;

(35)

where, as x → 0,

Y → 1 + 2|ε2|
1 − 2|ε2| . (36)

When ε2 > 0 let �̄ = |log x|/log Y �, where z� denotes the integer below z. For � > 2�̄

the teeth are long enough that P
�(x) behaves like (33). For �̄ < � � 2�̄, P
�(x) is
non-recurrent with the leading power of x being fractional. For � � �̄

P
�<�̄(x) =




1 − ε2 − |ε1|
b+

− x
B4Y

�

|ε1ε2| + O(x) if ε1 
= 0;

1 − B5√
ε2

x
1
2 Y

1
2 � + O

(
x

1
2 Y− 1

2 �, xY−�
)

if ε1 = 0;
(37)

where the notation O(a, b) means O(max (a, b)).

3.2. General properties of the generating functions

The generating functions for any comb satisfy three simple properties which can be derived
from (6):

(i) Monotonicity. The value of PC(x) decreases monotonically if the length of a tooth is
increased.

(ii) Rearrangement. If the comb C ′ is created from C by swapping the adjacent teeth Tk and
Tk+1 then PC ′(x) > PC(x) if |Tk+1| < |Tk|.

(iii) Inheritance. If walks on Ck or Tk are non-recurrent for finite k then walks on C are
non-recurrent.

The proof of the first two follows that given in [14] for the special case ε2 = ε1 = 0.
The third can be shown by assuming that either PC1(0) < 1 or PT1(0) < 1; it then follows
immediately from (6) that PC(0) < 1 and the result follows by induction.

3.3. Useful elementary bounds

By monotonicity GC(x; n) is always bounded above by G	(x; n) from which we get

GC(x; n) <
3

b+
exp(−n�ε1,ε2(x)), (38)
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Table 1. Leading and leading non-analytic behaviour of 1 − 〈PT 〉µ in various cases.

Ensemble ε2 < 0 ε2 = 0 ε2 > 0

µA Bx Bx
1
2 B + B ′x

µB, a < 2 Bx Bxa/2 B(|log x|a−1)−1

µB, a = 2k Bx Bx + · · · + B ′xk |log x| B(|log x|a−1)−1

µB, a > 2, a 
= 2k Bx Bx + · · · + B ′xa/2 B(|log x|a−1)−1

where

�ε1,ε2(x) =




x
2 + ε2

2ε1
if ε1 > 0,

x
1
2

√
2 + ε2

1 − ε2
if ε1 = 0,

log

(
b−
b+

)
if ε1 < 0.

(39)

Now let P
(N)
C (x) denote the contribution to PC(x) from walks that reach beyond n = N on

the spine. It is straightforward to show using the arguments of section 2.5 of [14] that

P
(N)
C (x) � 1

3b−G
ε1,ε2
C (x;N)G

−ε1,ε2
C (x;N). (40)

Combining this with (38) we obtain the useful bound

P
(N)
C (x) � 3b−

b2
+

exp(−N(�ε1,ε2(x) + �−ε1,ε2(x))). (41)

Now consider the ensemble µ′ of combs C for which Tk = N1, k = 1, . . . , K − 1, TK =
N�; at k > K teeth are short, Tk = N1, with probability 1−p or long, Tk = N�, with probability
p; and the nth tooth is short, Tn = N1. Then using the representation (18) GC(x; n) can be
bounded above by noting that if Tk+1 = N� then PCk

< P�	, otherwise PCk
< P	. This gives

GC(x, n) � 3

b+
(1 − x)−n/2

(
b+

b−

)n

P�	(x)n−K−kP	(x)k+K, (42)

and hence

〈GC(x, n)〉µ′ =
n−K−1∑

k=0

(
n−K−1

k

)
pn−K−1−k(1 − p)kGC(x, n)

� 3

b+

(
b+

b−

)n
P	(x)KP�	(x)

(1 − x)n/2
((1 − p)P	(x) + pP�	(x))n−K−1. (43)

4. Results independent of the comb ensemble µ

In this section, we show that in some regions of ε1,2 the behaviour at large time is essentially
independent of the comb ensemble or else simply dependent upon 〈PT (x)〉µ. The leading, and
where different, the leading non-analytic, behaviour of 〈PT (x)〉µ as x → 0 for the measures
studied here is given in table 1. The results for µA are trivial, as are those for any measure
when ε2 < 0, while the case µB and ε2 = 0 can be derived using the techniques in [14]. The
calculation for µB and ε2 > 0 is somewhat subtle and is included in appendix A.
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4.1. ds when ε2 < 0

First we show that for any comb ensemble

ds =
{

0 if ε1 < 0 and ε2 < 0;
1 if ε1 = 0 and ε2 < 0.

(44)

By monotonicity we have that for any comb C

P∗(x) � PC(x) � P	(x). (45)

Taking expectation values and using (32) and (34) it follows that for ε2 < 0

P(x) = 〈PC(x)〉µ =




1 − B1x
1
2 + O(x) if ε1 = 0,

1 − ε2 − |ε1|
b+

− x
B2

|ε1| + O(x2) otherwise.
(46)

Similarly,

Q∗(x) � QC(x) � Q	(x) (47)

and so

Q(x) = 〈QC(x)〉µ =




B1

x
1
2

+ O(1) if ε1 = 0,

B2|ε1|
x

+ O(1) if ε1 < 0,

(48)

and (44) follows.

4.2. ds when ε1 > 0

When ε1 > 0 all combs are non-recurrent and so we must examine the derivatives of Q(x).
Differentiating (5) and (6) gives

Q
(1)
C (x) = QC(x)2P

(1)
C (x), (49)

P
(1)
C (x) = −PC(x)

1 − x
+

PC(x)2

(1 − x)b−

(
bT P

(1)
T1

(x) + b+P
(1)
C1

(x)
)
. (50)

By monotonicity (50) can be bounded above and below by replacing PC with P∗ and P	,
respectively. Taking the expectation value and using translation invariance to note that
〈PC〉µ = 〈PC1

〉
µ

shows that if
〈
P

(1)
T (x)

〉
µ

diverges as x → 0 then

Q(1)(x) ∼ B
〈
P

(1)
T (x)

〉
µ

+ O
(√

x
〈
P

(1)
T (x)

〉
µ
, 1
)
. (51)

As can be seen from table 1, in some cases 〈PT (x)〉µ is analytic or only higher derivatives
diverge. For the measures considered here it can be shown that if 〈PT (x)〉µ is analytic at x = 0
then so is Q(x). If on the other hand 〈PT (x)〉µ is not analytic but the kth derivative diverges
then

Q(k)(x) = B
〈
P

(k)
T (x)

〉
µ

+ +O
(√

x
〈
P

(k)
T (x)

〉
µ
, 1
)
. (52)

The proof is a straightforward but tedious generalization of (49) and (50) and is relegated
to appendix B. If a derivative of Q(x) diverges then ds can be read off using (14) and (52).
Otherwise if all finite order derivatives are finite then 〈pC(t)〉µ decays at large t faster than
any power and ds is not defined.
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4.3. dk when ε2 < 0 or ε1 < 0

We show that for any comb ensemble

d̃k = 0, dk =



0 if ε1 < 0,

k/2 if ε1 = 0 and ε2 < 0,

k if ε1 > 0 and ε2 < 0.

(53)

It is trivial to show that

1 � D� � B

|ε2| , ε2 < 0, (54)

and then by monotonicity we get

G∗(x; n)

1 − P∗(x)
� H(x; n) � B

|ε2|
G	(x; n)

1 − P	(x)
. (55)

Combining this with (32) and (34) yields the results for ε2 < 0.
To deal with ε1 < 0 and ε2 � 0 note that monotonicity gives〈

D|Tn|(x)

1 − PC(x)

〉
µ

G∗(x; n) � H(x; n) �
〈

D|Tn|(x)

1 − PC(x)

〉
µ

G	(x; n). (56)

Using the lower bound and (18), (24) and (33) we get after summing over n〈
D|Tn|(x)

1 − PC(x)

〉
µ

3

b+

b−√
4ε2 + ε2

1 − ε1 − 2ε2

�
∞∑

n=0

H(x; n) � 2

x
. (57)

Inserting this into the upper bound of (56) gives

H(x; n) � 2

x

b+

3

√
4ε2 + ε2

1 − ε1 − 2ε2

b−
G	(x; n). (58)

It is a trivial consequence of (24) that
∞∑

n=0

nkH(x; n) >
c

x
, k > 0, (59)

and the results then follow by using (38).

5. The spectral dimension when ε2 � 0 and ε1 � 0

Here and in some of the sections to follow we will need to sum over the location of the first
long tooth to determine the spectral dimension. Most generally we call a tooth long when it
has length �� and short when it has length <�. Consider combs for which the first L − 1
teeth are short but the Lth tooth is long; the probability for this is p(1 − p)L−1, where p is the
probability of a tooth being long. Denoting by �L a comb having the first long tooth at vertex
L gives

Q(x) =
∞∑

L=1

〈Q�L(x)〉µp(1 − p)L−1. (60)

Q�L(x) is bounded above by the comb in which all teeth at n � L + 1 are short, and below by
the comb in which all teeth at n � L + 1 are infinite,

Q{Tn<L=N�′ ,�′��;Tn�L=N∞}(x) < Q�L(x) < Q{Tn 
=L=N1;TL=N�}(x). (61)
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5.1. µA—infinite teeth at random locations

5.1.1. ε2 = 0, ε1 < 0. We first show that the exponent β = 1
2 —so it is unchanged from the

comb *. This result follows from the inequalities

1 − pBx
1
2

|ε1| + O(x) � P(x) � 1 − pB ′x
1
2 + O(x). (62)

The lower bound is obtained by applying Jensen’s inequality to (6). To get the upper bound
we average over the first tooth and then by monotonicity we obtain

P(x) � pP�	(x) + (1 − p)P	(x), (63)

with � = ∞ and using (6) and (32) gives the bound required.
The spectral dimension is given by

ds =




1 if p � 2|ε1|(1 + |ε1|)−1,

log(1 − p)

log
( 1−|ε1|

1+|ε1|
) otherwise. (64)

This result follows from estimating the sum in (60) using the bounds in (61) with � = ∞ and
short teeth being N1. PC(x) for these bounding combs is computed in appendix C and using
(C.3) we get upper and lower bounds on Q∞L(x) of the form

1

Bx + B ′x
1
2
( 1−|ε1|

1+|ε1|
)L . (65)

5.1.2. ε2 > 0, ε1 < 0. The probability that C is non-recurrent is at least p, the probability
that T1 = N∞, and hence

P(0) < 1. (66)

In fact, it follows from the lemma of appendix B that P (k)(x) is finite for all finite k so the
exponent β is undefined.

The spectral dimension is given by

ds = 2 log(1 − p)

log
( 1−|ε1|−ε2

1+|ε1|−ε2

) . (67)

To show this we start by estimating Q(x) in exactly the same way as in section 5.1.1 except
that the behaviour of the limiting combs is now given by (C.5) so that there are upper and
lower bounds on Q∞L(x) of the form

1

Bx + B ′( 1−|ε1|−ε2

1+|ε1|−ε2

)L . (68)

When p � 1 − b+/b− this sum diverges at x = 0 and it is then straightforward to obtain (67).
For larger p the sum is convergent at x = 0 so we next examine Q(1)(x) = 〈

Q2
CP

(1)
C

〉
µ

. Note

that −P
(1)
C � 1

3b−; then letting Z be a very large integer and using Hölder’s inequality

b−〈QC(x)2〉µ � −Q(1)(x) � 〈QC(x)2+1/Z〉µ
2Z

2Z+1
〈−P

(1)
C (x)2Z+1

〉
µ

1
2Z+1

. (69)

By the lemma of appendix B the second factor in the upper bound is finite as x → 0 so we
need an estimate of

〈
Q2

C

〉
µ

. This is provided by (68) modified by squaring the denominator;

when p � 1 − (b+/b−)2 this sum diverges at x = 0 and once again we obtain (67). For still
larger p both Q and Q(1) are finite at x = 0 and we examine the second and higher derivatives.
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This uses (B.4), (−1)kP
(k)
C � bk

−bk−1
+

/
32k−1, Hölder’s inequality and the lemma; the term

with the highest power of QC dominates and the result is always (67).1

5.1.3. ε2 > 0, ε1 = 0. By the same argument as in section 5.1.2 we find P(0) < 1, so β is
again undefined. An upper bound on Q(x) may be obtained as in section 5.1.1 using (C.9) to
get

Q∞L(x) � (L + (1 − ε2)/4ε2) (70)

which means the upper bound of (60) is finite. A proof that all derivatives of Q(x) are finite
is given in appendix B.2, so 〈pC(t)〉µ decays faster than any power at large t.

5.2. µB—teeth of random length

In this subsection, we are concerned with random combs that have a distribution of tooth
lengths. The general strategy for determining quantities of interest is to identify teeth that
are long enough to affect the critical behaviour of the biased random walk and consider the
probability with which they occur. It will be useful to define the function

λ(δ, η, ζ ) =
⌊

δ|log x|η − ζ(a − 1) log|log x|
log Y

⌋
, (71)

which will be used to denote a tooth length, and the function

p
>
(�) =

∞∑
k=�

Ca

ka
= Ca

(a − 1)�a−1
(1 + O(�−1)), (72)

which is the probability that a tooth has length greater than � − 1.

5.2.1. ε2 = 0, ε1 < 0. We first show that

β =



a

2
if a < 2,

1 otherwise.
(73)

The proof follows the lines described in section 5.1.1 with a slight modification for the upper
bound on P(x). Note that, from (30), teeth of length � >

⌊
x− 1

2
⌋

have PT (x) � 1 − Bx
1
2 . We

then proceed as in (63) but with � = ⌊x− 1
2
⌋

+ 1.
The exponent β is non-trivial if a < 2 but, as we now show, ds = 0 for all a > 1 so mean

field theory does not apply when a < 2. This result follows from the inequalities

B ′

x|log x| 1
a−1

� Q(x) � B

x
. (74)

The upper bound is a consequence of Q(x) < Q	(x). To obtain the lower bound consider
the combs for which at least the first N teeth are all shorter than �0. Then using monotonicity
and (41)

Q(x) � (1 − p
>
(�0))

N

1 − P
�0(x) + O(exp(−N(�ε1,ε2(x) + �−ε1,ε2(x))))
. (75)

Setting �0 = λ(1, (a − 1)−1, 0), N = 2(�ε1,ε2 + �−ε1,ε2)−1|log x|� + 1 and using (35) the
result follows for small enough x.

1 Strictly speaking when 1 − (b+/b−)k < p � 1 − (b+/b−)k+1/Z the upper bounds diverge so our proof does not
work for these arbitrarily small intervals.
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5.2.2. ε2 > 0, ε1 < 0. The exponent β = 0 but there are computable logarithmic corrections
and we find that

1 − B

|log x|a−1 � P(x) � 1 − B ′

|log x|a−1 . (76)

The lower bound follows from applying Jensen’s inequality to (6). For the upper bound
note that teeth of length � > λ(1, 1, 0) have PT < B. Again proceed as in (63) with
� = λ(1, 1, 0) + 1.

The spectral dimension is ds = 0 showing again that mean field theory does not apply.
This follows from the inequalities

B ′ exp(−B ′′|log x|1/a)

x
� Q � B

x
, (77)

for small enough x. The upper bound is a consequence of Q(x) < Q	(x) and the lower bound
follows from (75) by setting �0 = λ(1, 1/a, 0), N = 2(�ε1,ε2 + �−ε1,ε2)−1|log x|� + 1 and
using (37).

5.2.3. ε2 > 0, ε1 = 0. The exponent β = 0, but there are logarithmic corrections which
follow from the inequalities

1 − B

|log x|(a−1)/2
� P(x) � 1 − B ′

|log x|(a−1)/2
. (78)

The lower bound comes from applying Jensen’s inequality to the recurrence relation (6). The
upper bound is obtained by requiring unitarity of the heat kernel and its proof is relegated to
appendix D.

The spectral dimension and logarithmic exponent are given by

ds = 2, α̃ = a − 1, (79)

which shows that mean field theory does not apply. This result follows from

B ′|log x|a−1 < Q(x) < B|log x|a−1 (80)

for small enough x which is obtained by a modified version of the argument in section 5.1.1.
First let �0 = λ(1, 1, ζ ), so that

P�0(x) = 1 − B

|log x|ζ(a−1)
+ O

(
1

|log x|2ζ(a−1)

)
. (81)

To obtain (80) we use (60) and (61) with p = p>(�0), � = �0 and for the lower bound set
Tn<L = N�0 . Then using the bounds in (C.8) with ζ = 1 and (C.7) with ζ = 2 and estimating
the sums gives the result.

6. Heat kernel when ε1 � 0, ε2 � 0

These calculations require 〈D�〉µ in the various cases which are tabulated in table 2 for
convenience.

6.1. µA—infinite teeth at random locations

We show that

dk =
{

0 if ε2 > 0 and ε1 � 0,

k/2 if ε2 = 0 and ε1 > 0.
(82)

These results follow from (85), (86) and (87).
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Table 2. 〈D�〉µ in various cases.

Ensemble ε2 < 0 ε2 = 0 ε2 > 0

µA B + O(x) Bx− 1
2 + O(1) Bx−1 + O(1)

µB, a � 2 B + O(x) B + O(x) B(x|log x|a−1)−1 + O(1)

µB, a < 2 B + O(x) Bxa/2−1 + O(1) B(x|log x|a−1)−1 + O(1)

Noting that for ε1 > 0 all combs have 1 − B−1
− − < PC(x) < 1 − B−1

+ and using
monotonicity gives

B−〈D|Tn|(x)〉µG∗(x; n) � H(x; n) � 〈D|Tn|(x)〉µ
〈

GC ′(x; n)

1 − PC ′(x)

〉
µ

, (83)

� B+〈D|Tn|(x)〉µ〈GC ′(x; n)〉µ, (84)

where C ′ is constructed from C by forcing Tn = N1. If ε2 > 0 then using (43) with
K = 0, � = ∞ gives the upper bound

H(x; n) <
B

x
exp(−B ′n). (85)

If ε2 = 0 then exactly the same calculation gives

H(x; n) <
B

x
1
2

exp
(−B ′x

1
2 n
)

(86)

and evaluating the left-hand side of (83) gives a lower bound of the same form. If ε2 > 0 and
ε1 = 0 it is necessary to sum over the location of the first infinite tooth. Using (C.9), (43) and
introducing C ′ as in (83) gives

H(x; n) <
B

x
exp(−B ′n). (87)

6.2. µB—teeth of random length

We show that

dk =



0 if ε2 > 0 and ε1 � 0;
ka/2 if ε2 = 0, ε1 > 0 and a < 2;
k if ε2 = 0, ε1 > 0 and a � 2.

(88)

These results follow from

H(x; n) <




B

x|log x|a−1 exp(−B ′n/|log x|a−1) if ε2 > 0 and ε1 � 0;
B

x1−a/2
exp(−B ′nxa/2) if ε2 = 0, ε1 > 0 and a < 2;

B exp(−nB ′x) if ε2 = 0, ε1 > 0 and a � 2;

(89)

when x is small enough and lower bounds of the same form.
The upper bounds are obtained by proceeding as in subsection 6.1: for ε1 > 0 and ε2 > 0

setting � = λ(1, 1, 0) + 1 and for ε1 > 0 and ε2 = 0 setting � = ⌊
x− 1

2
⌋

+ 1. For ε1 = 0
and ε2 > 0 we start with the upper bound of (83); let �1 = λ(1, 1, 2), p1 = p

>
(�1) and

�2 = λ(2, 1, 0), p2 = p
>
(�2). The latter shall be called long teeth and we denote by (�2K	)
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the comb with a single long tooth at vertex K. We now sum over the location of the first long
tooth using (18), (43) and (C.8) and taking account of the fact that the first long tooth may be
before or after the nth tooth:

H(x; n) �
〈
D|Tn|(x)

〉
µ

n−1∑
K=1

p2(1 − p1)
K−1

1 − P(�2K	)(0)

K−1∏
m=0

P(�2K	)m

× ((1 − p1)P	 + (p1 − p2)P�1	 + p2P�2	)
n−K−1

+
〈
θ(�2 − |Tn|)D|Tn|(x)

〉
µ

∞∑
K=n

p2(1 − p1)
K−1

1 − P(�2K	)(0)

n−1∏
m=0

P(�2K	)m . (90)

In the first sum we use the value given in table 2 for
〈
D|Tn|(x)

〉
µ

. In the second sum〈
θ(�2 − |Tn|)D|Tn|(x)

〉
µ

= B(x|log x|2(a−1))−1 + O(1) for |Tn| < �2 and the result follows.
To obtain the lower bounds when ε1 > 0 we note that

H(x; n) � B−
〈
D|Tn|(x)GC(x; n)

〉
µ

= B−
〈
D|Tn|(x)

〉
µ
〈GC(x; n)〉µ (91)

where the measure µ is defined by

µ� = µ�, for teeth Tk, k 
= n,

µ� = µ�D�

〈D�〉µ , for tooth Tn.
(92)

Using the decomposition (18) and Jensen’s inequality

〈GC(x; n)〉µ � 3(1 − x)n/2

b+
exp(−Sn), (93)

where

Sn =
n−1∑
k=0

〈
b−
b+

− PCk+1(x)

〉
µ

+
bT

b+

〈
1 − PTk+1(x)

〉
µ
. (94)

Now applying Jensen’s inequality with the measure µ to (6) shows that the lower bounds
satisfy a recursion formula of exactly the same form as discussed in appendix C. So from
(C.1) we find that

Sn � n

(
b−
b+

− P(x) +
bT

b+
〈1 − PT (x)〉µ

)
− bT

b+
(〈PT (x)〉µ − 〈PT (x)〉µ)

−
n−1∑
k=1

P(x)(1 − A(x))

A(x)k−1(P̄ (x) − A(x)P (x))/(P̄ (x) − P(x)) − 1
, (95)

where

P(x) = (1 − x)b−
3 − bT 〈PT (x)〉µ − b+P(x)

,

P̄ (x) = (1 − x)b−
3 − bT 〈PT (x)〉µ − b+P(x)

,

A(x) = (1 − x)b−
P(x)2b+

.

(96)

For ε1 > 0 it is straightforward to check that A(x) > c > 1 and that the sum in (95) is
bounded above by an n-independent constant. Lower bounds of the form of (89) then follow
by inserting the appropriate 〈PT 〉µ in (96) and (95).
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ε2

ε1

ds = 0

dk = 0

dk = 0dk = 0

dk = 0

dk = 0

ds = 1

ds = 1 ds = 3

dk = k

dk = k
2

dk = k
2

ds = 3
2

dk = k
4

ds n.d. ds n.d.

ds n.d.

ds = 2 log(1 − p) Ω−1

ds = log(1 − p) Ω−1 p < p∗
p ≥ p∗

Figure 3. Results for µA where � = log(
1−|ε1|−ε2
1+|ε1|−ε2

) and p∗ = 2|ε1|(1 + |ε1| − ε2)
−1. The

logarithmic exponents α̃ and d̃k are always zero for µA.

When ε1 = 0

H(x; n) �
〈
D|Tn|(x)

〉
µ

〈
GC ′(x; n)

1 − PC ′(x)

〉
µ

, (97)

where C ′ is constructed from C by setting Tk�n = N∞. Choosing �0 = λ(1, 1, 2) and using
(18) and (C.7) gives

H(x; n) �
〈
D|Tn|(x)

〉
µ
(1 − p>(�0))

n−13(1 − x)−n/2P∗(x)2

∏n−1
k=3

(
P
�0(x) − 1

k−1

)
1 − P
�0(x) + 1

n−1

>
〈
D|Tn|(x)

〉
µ
(1 − p>(�0))

n−13(1 − x)−n/2P∗(x)2

× 1

n − 2
· 1

1 − P
�0(x) + 1
n−1

exp

{
(n − 3)2

(
1 − P
�0(x)

)
2P
�0(x) − 1

}
, (98)

for n � 4 which gives the result.

7. Results and discussion

Figure 3 outlines the results that we have computed for µA. These are new and show that
the most interesting regime is actually when the bias along the spine is towards the origin, a
circumstance which has not been studied much in the literature. When ε1 � 0 and ε2 > 0
the walker disappears rapidly, never to return, and 〈pC(t)〉µA decays faster than any power.
When ε1 < 0 the bias along the spine is keeping the walker close to the origin but if there are
any infinite teeth present the walker can spend a lot of time in the teeth; the conflict between
these effects leads to a non-trivial ds . The fact that d1 = 0 whenever ε2 > 0 shows that the
walker never gets far down the spine; if she disappears then it is up a tooth that she is lost.
The Hausdorff dimension for µA is dH = 2, regardless of bias and so we have here several
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ε2

ε1

ds = 0

ds = 0

ds = 0

dk = 0

dk = 0 dk = 0

dk = 0

dk = 0

ds = 1

dk = k

dk = k

dk = k
2

dk = k
2

ds = 1
2

ds n.d.

ds = 2 ds = 2

ds = a
4

ds = 2 + a
α̃k = 1
α̃k = 0

α̃ = a− 1 α̃ = −a

d̃k = 0

d̃k = 0

d̃k = 0 d̃k = k(a− 1) d̃k = k(a− 1)

dk = ka
2

dk = ka
4

if a < 2

if a < 2

if a < 2

if a ≥ 2

if a ≥ 2

if a ≥ 2

if a = 2k
if a �= 2k

Figure 4. Results for µB . When ε2 < 0 the logarithmic exponents α̃ and d̃k are always zero.

examples of violation of the bound 2dH /(1 + dH ) � ds � dH , which applies for unbiased
diffusion [19].

Figure 4 shows our results for µB as well as the results for the unbiased case studied in
[14]. This length distribution has been studied quite extensively in the literature but usually
under the assumption that ε2 � 0. As can be seen the interesting behaviour displayed by
µA when ε1 < 0 does not occur here—essentially because very long teeth are not common
enough. We believe that with more work α̃ when ε1 < 0, ε2 � 0 can be found using our
methods, but as this will not give further physical insight we leave the calculations to elsewhere
[17]. The case ε1 > 0, ε2 > 0 (often called topological bias) was originally studied using
mean field theory, which gave the mean square displacement

〈n2(t)〉 ∼ (log t)2(a−1), (99)

and this is in fact correct since the walker spends much of the time in the teeth. However,
the claim in [3] that (99) holds for ε2 > 0 regardless of ε1 is false. The mean field method
gives the correct result when ε1 = 0 only because the walk on the spine is ignored, which
amounts to using PT (x) for PC(x) in (21) and naively applying Jensen’s inequality. The case
ε1 > 0, ε2 = 0 was studied by Pottier [13] who computed the leading contribution exactly, but
without complete control over the sub-leading terms; she also calculated the leading behaviour
〈n2〉 − 〈n〉2 which we have not. Of course our results for ds and d1 agree with hers. The
Hausdorff dimension for µB is dH = 3 − a when a < 2 and dH = 1 when a � 2 and so again
we see that, as expected, a biasing field intensifies the difference between the purely geometric
definition of dimension and that which is related to particle propagation.

The results for ε2 < 0 are intuitively obvious and, as we have proved, apply for any
model with identically and independently distributed tooth lengths. The walker never gets
far into the tooth and therefore combs have long time behaviour characteristic of the spine
alone.

This paper has given a comprehensive treatment of biased random walks on combs
using rigorous techniques—namely recursion relations for generating functions combined
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with unitarity and monotonicity arguments. It serves to put in context many previous results
as well as present new ones. In the unbiased case [14] and in some bias regimes mean field
theory is sufficient to compute the leading order behaviour because the walker either does not
reach the ends of the longest teeth or does not travel far enough down the spine for variations
from average to be important. But, as is illustrated in many examples here, a full treatment is
needed when such fluctuations cannot be ignored. Finally, while the results are of interest in
themselves, an important point of the paper was to demonstrate that rigorous analytic methods
can be used to treat biased diffusion on random geometric structures and it is to be hoped that
these tools can be extended to higher dimensional problems.
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Appendix A. Calculation of 〈PT (x)〉µB for ε2 > 0

First we rewrite (30) as

P�(x) = P∞(x)Y − (Y − 1)P∞(x)X−1 1

X−1 + Y−�
, (A.1)

so that

〈PT (x)〉µB = P∞(x)Y − (Y − 1)P∞(x)X−1

〈
1

X−1 + Y−�

〉
µB

(A.2)

with 〈
1

X−1 + Y−�

〉
µB

=
∞∑

�=1

Ca�
−a

X−1 + Y−�
≡ S. (A.3)

Since for ε2 > 0, Y > 1 we let log Y = ρ and write

S =
σ |log x|

ρ
�∑

�=1

Ca�
−a

X−1 + e−ρ�
+

∞∑
σ |log x|

ρ
�+1

Ca�
−a

X−1 + e−ρ�
, (A.4)

where σ is an arbitrary constant <1. This is bounded above by taking � in the exponential to
be its value at the top of each sum to give

S � Ca

X−1 + xσ

σ |log x|
ρ

�∑
�=1

�−a +
Ca

X−1

∞∑
σ |log x|

ρ
�+1

�−a

(A.5)
S � 1

xσ
+

c0X

|log x|a−1 .

Noting that as x → 0, X−1 → Bx we get a lower bound on 〈P�(x)〉µB of

〈PT (x)〉µB � 1 − B1

|log x|a−1 , (A.6)

for small enough x. An equivalent upper bound is calculated in the same manner by ignoring
the first term in (A.4) and setting σ = 1, which leads to the result quoted in table 1. A similar
procedure leads to bounds of the form B/x|log x|a on

〈
P

(1)
T (x)

〉
µB , which we also need, at

small enough x.
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Appendix B. Proof of results for non-recurrent regime

First we define a structure of ordered lists of ordered integers. Let S denote an ordered list of
hS integers

S =
{

[n1, n2, . . . , nhS
], n1 � n2 � · · · � nhS

� 1, hS � 1,

[ ], hS = 0.
(B.1)

Define

|S| =
{∑hS

i=1 ni, hS � 1,

0, hS = 0,
(B.2)

and let SN denote the set of all distinct lists S with |S| = N . Within SN the lists S and S ′ are
ordered by letting j = min(i : ni 
= n′

i ) and then setting S > S ′ if nj > n′
j . Finally if S ∈ SN

and S ′ ∈ SN ′
with N > N ′ then S > S ′. It is convenient to denote by S + 1 the lowest list

above S, and by S ∪ S ′ the list obtained by concatenating S and S ′ and then ordering as above.
Now define

H(S; f (x)) = (−1)|S|
hS∏
i=1

f (ni )(x), (B.3)

and for the empty list H([ ]; f (x)) = 1. We need the following lemma, which is proved in
appendix B.1:

Lemma.

(i) If 〈H(S;PT (x))〉µ is finite as x → 0 for all S � S̄ then 〈H(S;PC(x))〉µ is finite as x → 0
for all S � S̄ and ε1 
= 0.

(ii) If the conditions of part (i) apply and, as x → 0, 〈H(S̄ + 1, PT (x))〉µ diverges as
x−γ , γ > 0, then 〈H(S̄ + 1, PC(x))〉µ also diverges as x−γ .

Differentiating (5) k times gives

Q
(k)
C (x) = P

(k)
C (x)

(1 − PC(x))2
+ (−1)k

∑
S∈Sk/[k]

C(S)H(S;PC(x))

(1 − PC(x))hS+1
(B.4)

where C(S) is a combinatorial coefficient. It is straightforward to check for any S that
〈H(S;PT (x))〉µA is analytic for ε2 
= 0 and that 〈H(S;PT (x))〉µB is analytic when ε2 < 0.
When ε2 = 0

H(S;P�(x))|x=0 = cS�
2|S|−hS (1 + O(l−2)) (B.5)

from which 〈H(S;P�(x))〉µB is divergent for S = [�a/2�], and with smaller degree for
[�a/2�−1, 1] if 2k < a � 2k + 1, k ∈ Z, but always convergent for any inferior S. The results
given in section 4.2 then follow from noting that P∗(x) < PC(x) < P	(0) < 1 and using the
lemma.

B.1. Proof of lemma

To prove the lemma note that

H(S; f + g) =
∑

S ′∪S ′′=S

H(S ′; f )H(S ′′; g) (B.6)

and differentiate (6) n times to get

(−1)nP
(n)
C (x) = (1 − x)F

(n)
C (x) + nF

(n−1)
C (x) (B.7)
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where

F
(n)
C (x) = PC(x)

1 − x

∑
S∈Sn

C(S)

(
PC(x)b+

(1 − x)b−

)hS

×
∑

S ′∪S ′′=S

(
bT

b+

)hS′′

H
(
S ′;PC1(x)

)
H
(
S ′′;PT1(x)

)
. (B.8)

It is then straightforward to generalize this formula to

H(S, PC(x)) = R + (PC(x))hS

∑
S ′∈S |S|
S ′�S

C(S, S ′)
(

PC(x)b+

(1 − x)b−

)hS′

×
∑

S ′′∪S ′′′=S ′

(
bT

b+

)hS′′′

H
(
S ′′;PC1(x)

)
H
(
S ′′′;PT1(x)

)
, (B.9)

where the leading terms are written out explicitly and R contains contributions depending
only on lists inferior to S |S|. Every term on the right-hand side is positive so it can be bounded
above by using PC(x) < P	(0) and then the expectation value is taken; moving the S ′′ = S

term to the left-hand side gives

〈H(S, PC(0))〉µ
(

1 −
(

P	(0)2b+

b−

)hS
)

� R + (P	(0))hS

∑
S ′∈S |S|
S ′�S

C(S, S ′)
(

P	(0)b+

b−

)hS′

×
∑

S ′′∪S ′′′=S ′
S ′′ 
=S

(
bT

b+

)hS′′′ 〈
H(S ′′;PC1(0))

〉
µ
〈H(S ′′′;PT (0))〉µ. (B.10)

Part (i) is true for S̄ = [1] so the lemma then follows immediately by induction on S. To prove
part (ii) use part (i) to isolate the potentially divergent terms in (B.9) leaving

H(S̄, PC(x)) =
(

PC(x)2b+

(1 − x)b−

)hS̄

(
H
(
S̄;PC1(x)

)
+

(
bT

b+

)hS̄

H
(
S̄;PT1(x)

))
+ finite terms.

(B.11)

For small enough x,

0 <

(
PC(x)2b+

(1 − x)b−

)
< 1, ∀C (B.12)

and part (ii) follows upon taking expectation values.

B.2. ε1 = 0, ε2 > 0

We will show that

FS =
〈

H(S, PC(x))

(1 − PC(x))hS+1

〉
µA

(B.13)

is finite at x = 0, which together with (B.4) gives the result. Using (61) and (C.9) gives

FS <
〈
n

hS+1
C H(S, PC(x))

〉
µ
, (B.14)
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where nC is the location of the first infinite tooth of C. Applying (B.9) iteratively we find that
the right-hand side is bounded above by terms of the form〈

nK
C

〉
µA〈H(S ′, PT (x))〉µA. (B.15)

The maximum value of K occurring is hS + 1 + �S where �S is the number of strings inferior
to S. As remarked before 〈H(S ′, PT (x))〉µA is analytic and

〈
nK

C

〉
µA is trivially finite which

completes the proof.

Appendix C. Calculation of PC(x) for some useful combs

Let the comb C have Tk = N�, k < L, and arbitrary TL and CL. Then following the method
of appendix A of [14] we find

P
ε1ε2
C (x) = P

ε1ε2

� (x)

(
1 +

(1 − A)
(
P

ε1ε2
CL−1

(x) − P
ε1ε2

� (x)

)
AL−1

(
P

ε1ε2
CL−1

(x) − AP
ε1ε2

� (x)

)− (P ε1ε2
CL−1

(x) − P
ε1ε2

� (x)

)
)

(C.1)

where

A = (1 − x)b−(
P

ε1ε2

� (x)

)2
b+

. (C.2)

Setting ε2 = 0, ε1 < 0, � = 1, TL = N∞ and CL = 	 we find after some algebra that

P
ε10
C (x) = P

ε10
	 (x)

(
1 + A−L

(
x

1
2
A − 1

2ε1
+ O(x)

))
(C.3)

and, as x → 0,

A → 1 + |ε1|
1 − |ε1| . (C.4)

Repeating the exercise but with CL = ∗ yields a similar result.
If instead we set ε2 > 0, ε1 < 0, � = 1, TL = N∞ and CL = 	 we find

P
ε1ε2
C (x) = P

ε1ε2
	 (x)

(
1 +

2ε2(A − 1)A−L

ε1 − 2ε2(1 − A−L)
(1 + O(x))

)
(C.5)

and, as x → 0,

A → 1 + |ε1| − ε2

1 − |ε1| − ε2
. (C.6)

Again, repeating the exercise but with CL = ∗ yields a similar result.
With ε2 > 0, ε1 = 0, and C = {Tk<L = N�, Tk�L = N∞} we find that

P
0ε2
C (x) > P

ε1ε2

� (x) − 1

L − 1
, L > 2, (C.7)

(it is good enough to use P∗(x) for k = 2); and for C = {Tk 
=L = N1, TL = N�}, x < x0,

P
0ε2
C (x) < P

0ε2
	 (x)


1 − 1

AL−1−1
A−1 + BAL−1

1−P
ε2
N�

(x)


 (C.8)

where A = (1 − x)
(
P

0ε2
	 (x)

)−2
and B is a positive constant depending on x0, A and ε2.
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Finally for ε2 > 0, ε1 = 0, and C = {Tk 
=L = N1, TL = N∞} we find that

P
0ε2
C (0) = 1 − 1

L + (1 − ε2)/4ε2
. (C.9)

Appendix D. Upper bound on P (x) when ε1 = 0, ε2 > 0

We start by writing

H(x; n) = 〈D|Tn|(x)
〉
µ

〈
GC(x; n)

1 − PC(x)

〉
µ

, (D.1)

where the measure µ̄ is defined in (92). Applying Jensen’s inequality with this measure to (6)
results in a recursion formula of the same form as discussed in appendix C and it is easy to
verify that

〈
PCk

(x)
〉
µ

�
〈
PCk

(x)
〉
µ

to give〈
GC(x; n)

1 − PC(x)

〉
µ

�
〈

GC(x; n)

1 − PC(x)

〉
µ

� 3

b+(1 − x)n/2

exp(−n〈1 − PC(x)〉µ)

〈1 − PC(x)〉µ , (D.2)

where in the last line we have again used Jensen’s inequality when averaging over the ensemble.
Applying this result to (D.1), summing over n and using (24) we obtain the inequality

2

x
�
〈
D|Tn|(x)

〉
µ

B

〈1 − PC(x)〉µ2
. (D.3)

Using the value for 〈D�(x)〉µ given in table 2 and rearranging gives the upper bound on P(x)

quoted in section 5.2.3.
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http://www.arxiv.org/abs/math-ph/0607020

	1. Introduction
	2. Definitions
	2.1. Random combs
	2.2. Biased random walks
	2.3. Two-point functions
	2.4. The heat kernel

	3. Basic properties
	3.1. Results for simple regular combs
	3.2. General properties of the generating functions
	3.3. Useful elementary bounds

	4. Results independent of the comb
	4.1. ds when e2 lt 0
	4.2. ds when e1 gt 0
	4.3. dk when e2 lt 0

	5. The spectral dimension
	5.1. mu A--infinite teeth at random locations
	5.2. mu B--teeth of random length

	6. Heat kernel when e1 ge 0
	6.1. mu A--infinite teeth at random locations
	6.2. mu B--teeth of random length

	7. Results and discussion
	Acknowledgments
	Appendix A. Calculation of PT(x)
	Appendix B. Proof of results for non-recurrent regime
	B.1. Proof of lemma
	e1 = 0, e2 gt 0

	Appendix C. Calculation of Pc(x)
	Appendix D. Upper bound on P(x)
	References

